인공지능 7/8

2021. 7. 8. 17:48인공지능 수업(Machine Learning)

#인공지능

#머신러닝

#Machine Learning

 

#7/8
from sklearn.datasets import load_digits
digits = load_digits()
type(digits)
digits.images.shape
digits

import matplotlib.pyplot as plt

fig, axes = plt.subplots(10, 10, figsize=(8, 8),
                         subplot_kw={'xticks':[], 'yticks':[]},
                         gridspec_kw=dict(hspace=0.1, wspace=0.1))

for i, ax in enumerate(axes.flat):
    ax.imshow(digits.images[i], cmap='binary', interpolation='nearest')
    ax.text(0.05, 0.05, str(digits.target[i]),
            transform=ax.transAxes, color='green')

X = digits.data
X.shape

y = digits.target
y.shape
   import matplotlib.pyplot as plt
from sklearn.manifold import Isomap
iso = Isomap(n_components=2)
iso.fit(digits.data)
data_projected = iso.transform(digits.data)
data_projected.shape

plt.scatter(data_projected[:, 0], data_projected[:, 1], c=digits.target,
            edgecolor='none', alpha=0.5,
            cmap=plt.cm.get_cmap('spectral', 10))

plt.colorbar(label='digit label', ticks=range(10))
plt.clim(-0.5, 9.5);

Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, random_state=0)

from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(Xtrain, ytrain)
y_model = model.predict(Xtest)

from sklearn.metrics import accuracy_score
accuracy_score(ytest, y_model)

from sklearn.metrics import confusion_matrix

mat = confusion_matrix(ytest, y_model)

sns.heatmap(mat, square=True, annot=True, cbar=False)
plt.xlabel('predicted value')
plt.ylabel('true value');

fig, axes = plt.subplots(10, 10, figsize=(8, 8),
                         subplot_kw={'xticks':[], 'yticks':[]},
                         gridspec_kw=dict(hspace=0.1, wspace=0.1))

test_images = Xtest.reshape(-1, 8, 8)

for i, ax in enumerate(axes.flat):
    ax.imshow(test_images[i], cmap='binary', interpolation='nearest')
    ax.text(0.05, 0.05, str(y_model[i]),
            transform=ax.transAxes,
            color='green' if (ytest[i] == y_model[i]) else 'red')



# iris dataset 살펴보기

from sklearn.datasets import load_iris

iris_data = load_iris()
print(type(iris_data))
iris_data

keys = iris_data.keys()
print('붓꽃 데이터 세트의 키들:', keys)

print('feature_names 의 type:', type(iris_data.feature_names))
print('feature_names 의 shape:', len(iris_data.feature_names))
print(iris_data.feature_names)

print('target_names 의 type:', type(iris_data.target_names))
print('feature_names 의 shape:', len(iris_data.target_names))
print(iris_data.target_names)

print('data 의 type:', type(iris_data.data))
print('data 의 shape:', iris_data.data.shape)
print(iris_data['data'])

print('target 의 type:', type(iris_data.target))
print('target 의 shape:', iris_data.target.shape)
print(iris_data.target)


from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

# 붓꽃 데이터 세트를 로딩합니다.
iris = load_iris()

# iris.data는 Iris 데이터 세트에서 피처(feature)만으로 된 데이터를 numpy로 가지고 있습니다.
iris_data = iris.data

# iris.target은 붓꽃 데이터 세트에서 레이블(결정 값) 데이터를 numpy로 가지고 있습니다.
iris_label = iris.target
print('iris target값:', iris_label)
print('iris target명:', iris.target_names)

# 붓꽃 데이터 세트를 자세히 보기 위해 DataFrame으로 변환합니다.
import pandas as pd
iris_df = pd.DataFrame(data=iris_data, columns=iris.feature_names)
iris_df['label'] = iris.target
iris_df.head(3)

X_train, X_test, y_train, y_test = train_test_split(iris_data, iris_label,
                                                    test_size=0.2, random_state=11)

# DecisionTreeClassifier 객체 생성
dt_clf = DecisionTreeClassifier(random_state=11)

# 학습 수행
dt_clf.fit(X_train, y_train)

# 학습이 완료된 DecisionTreeClassifier 객체에서 테스트 데이터 세트로 예측 수행.
pred = dt_clf.predict(X_test)

from sklearn.metrics import accuracy_score
print('예측 정확도: {0:.4f}'.format(accuracy_score(y_test, pred)))



from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score

# (1) 학습 데이터 세트로만 fitting and predicting

iris = load_iris()
dt_clf = DecisionTreeClassifier()
train_data = iris.data
train_label = iris.target
dt_clf.fit(train_data, train_label)

# 학습 데이터 셋으로 예측 수행
pred = dt_clf.predict(train_data)
print('예측 정확도:', accuracy_score(train_label, pred))

# (2) 데이터 세트를 나누어서 fitting and predicting

from sklearn.model_selection import train_test_split

iris_data = load_iris()
dt_clf = DecisionTreeClassifier( )

X_train, X_test, y_train, y_test = train_test_split(iris_data.data, iris_data.target,
                                                    test_size=0.3, random_state=121)

dt_clf.fit(X_train, y_train)
pred = dt_clf.predict(X_test)
print('예측 정확도: {0:.4f}'.format(accuracy_score(y_test, pred)))

# (3) K-Folds cross-validator

from sklearn.model_selection import KFold
import numpy as np

iris = load_iris()
features = iris.data
label = iris.target
dt_clf = DecisionTreeClassifier(random_state=156)

# 5개의 폴드 세트로 분리하는 KFold 객체와 폴드 세트별 정확도를 담을 리스트 객체 생성.
kfold = KFold(n_splits=5)
cv_accuracy = []
print('붓꽃 데이터 세트 크기:',features.shape[0])

n_iter = 0

# KFold객체의 split( ) 호출하면 폴드 별 학습용, 검증용 테스트의 로우 인덱스를 array로 반환
for train_index, test_index  in kfold.split(features):
    # kfold.split( )으로 반환된 인덱스를 이용하여 학습용, 검증용 테스트 데이터 추출
    X_train, X_test = features[train_index], features[test_index]
    y_train, y_test = label[train_index], label[test_index]
    #학습 및 예측
    dt_clf.fit(X_train , y_train)
    pred = dt_clf.predict(X_test)
    n_iter += 1
    # 반복 시 마다 정확도 측정
    accuracy = np.round(accuracy_score(y_test, pred), 4)
    train_size = X_train.shape[0]
    test_size = X_test.shape[0]
    print('\n#{0} 교차 검증 정확도 :{1}, 학습 데이터 크기: {2}, 검증 데이터 크기: {3}'
          .format(n_iter, accuracy, train_size, test_size))
    print('#{0} 검증 세트 인덱스:{1}'.format(n_iter,test_index))
    cv_accuracy.append(accuracy)

# 개별 iteration별 정확도를 합하여 평균 정확도 계산
print('\n## 평균 검증 정확도:', np.mean(cv_accuracy))

# (4) Stratified K-Folds cross-validator

# 4-1 KFold 사용할 경우

import pandas as pd

iris = load_iris()

iris_df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
iris_df['label']=iris.target
iris_df['label'].value_counts()

kfold = KFold(n_splits=3)
# kfold.split(X)는 폴드 세트를 5번 반복할 때마다 달라지는 학습/테스트 용 데이터 로우 인덱스 번호 반환.
n_iter =0

for train_index, test_index  in kfold.split(iris_df):
    n_iter += 1
    label_train= iris_df['label'].iloc[train_index]
    label_test= iris_df['label'].iloc[test_index]
    print('## 교차 검증: {0}'.format(n_iter))
    print('학습 레이블 데이터 분포:\n', label_train.value_counts())
    print('검증 레이블 데이터 분포:\n', label_test.value_counts())

# 4-2 StratifiedKFold 사용할 경우

from sklearn.model_selection import StratifiedKFold

skf = StratifiedKFold(n_splits=3)
n_iter=0

for train_index, test_index in skf.split(iris_df, iris_df['label']):
    n_iter += 1
    label_train= iris_df['label'].iloc[train_index]
    label_test= iris_df['label'].iloc[test_index]
    print('## 교차 검증: {0}'.format(n_iter))
    print('학습 레이블 데이터 분포:\n', label_train.value_counts())
    print('검증 레이블 데이터 분포:\n', label_test.value_counts())

dt_clf = DecisionTreeClassifier(random_state=156)

skfold = StratifiedKFold(n_splits=3)
n_iter=0
cv_accuracy=[]

# StratifiedKFold의 split( ) 호출시 반드시 레이블 데이터 셋도 추가 입력 필요
for train_index, test_index  in skfold.split(features, label):
    # split( )으로 반환된 인덱스를 이용하여 학습용, 검증용 테스트 데이터 추출
    X_train, X_test = features[train_index], features[test_index]
    y_train, y_test = label[train_index], label[test_index]
    #학습 및 예측
    dt_clf.fit(X_train , y_train)
    pred = dt_clf.predict(X_test)

    # 반복 시 마다 정확도 측정
    n_iter += 1
    accuracy = np.round(accuracy_score(y_test,pred), 4)
    train_size = X_train.shape[0]
    test_size = X_test.shape[0]
    print('\n#{0} 교차 검증 정확도 :{1}, 학습 데이터 크기: {2}, 검증 데이터 크기: {3}'
          .format(n_iter, accuracy, train_size, test_size))
    print('#{0} 검증 세트 인덱스:{1}'.format(n_iter,test_index))
    cv_accuracy.append(accuracy)

# 교차 검증별 정확도 및 평균 정확도 계산
print('\n## 교차 검증별 정확도:', np.round(cv_accuracy, 4))
print('## 평균 검증 정확도:', np.mean(cv_accuracy))

# (5) Evaluate a score by cross-validation

from sklearn.model_selection import cross_val_score , cross_validate

iris_data = load_iris()
dt_clf = DecisionTreeClassifier(random_state=156)

data = iris_data.data
label = iris_data.target

# 성능 지표는 정확도(accuracy) , 교차 검증 세트는 3개
scores = cross_val_score(dt_clf , data , label , scoring='accuracy',cv=3)
print('교차 검증별 정확도:',np.round(scores, 4))
print('평균 검증 정확도:', np.round(np.mean(scores), 4))

# (6) Exhaustive search over specified Hyper-parameter values for an estimator.

from sklearn.model_selection import GridSearchCV

# 데이터를 로딩하고 학습데이타와 테스트 데이터 분리
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris_data.data, iris_data.target,
                                                    test_size=0.2, random_state=121)
dtree = DecisionTreeClassifier()

### parameter 들을 dictionary 형태로 설정
parameters = {'max_depth':[1,2,3], 'min_samples_split':[2,3]}

import pandas as pd

# param_grid의 하이퍼 파라미터들을 3개의 train, test set fold 로 나누어서 테스트 수행 설정.
### refit=True 가 default 임. True이면 가장 좋은 파라미터 설정으로 재 학습 시킴.
grid_dtree = GridSearchCV(dtree, param_grid=parameters, cv=3, refit=True)

# 붓꽃 Train 데이터로 param_grid의 하이퍼 파라미터들을 순차적으로 학습/평가 .
grid_dtree.fit(X_train, y_train)

# GridSearchCV 결과 추출하여 DataFrame으로 변환
scores_df = pd.DataFrame(grid_dtree.cv_results_)
scores_df[['params', 'mean_test_score', 'rank_test_score', \
           'split0_test_score', 'split1_test_score', 'split2_test_score']]

print('GridSearchCV 최적 파라미터:', grid_dtree.best_params_)
print('GridSearchCV 최고 정확도: {0:.4f}'.format(grid_dtree.best_score_))

# GridSearchCV의 refit으로 이미 학습이 된 estimator 반환
estimator = grid_dtree.best_estimator_

# GridSearchCV의 best_estimator_는 이미 최적 하이퍼 파라미터로 학습이 됨
pred = estimator.predict(X_test)
print('테스트 데이터 세트 정확도: {0:.4f}'.format(accuracy_score(y_test,pred)))

'인공지능 수업(Machine Learning)' 카테고리의 다른 글

인공지능 7/13  (0) 2021.07.13
인공지능 7/7  (0) 2021.07.07
인공지능 7/6  (0) 2021.07.06